Nonlinear subdiffusive fractional equations and the aggregation phenomenon.
نویسنده
چکیده
In this article we address the problem of the nonlinear interaction of subdiffusive particles. We introduce the random walk model in which statistical characteristics of a random walker such as escape rate and jump distribution depend on the mean density of particles. We derive a set of nonlinear subdiffusive fractional master equations and consider their diffusion approximations. We show that these equations describe the transition from an intermediate subdiffusive regime to asymptotically normal advection-diffusion transport regime. This transition is governed by nonlinear tempering parameter that generalizes the standard linear tempering. We illustrate the general results through the use of the examples from cell and population biology. We find that a nonuniform anomalous exponent has a strong influence on the aggregation phenomenon.
منابع مشابه
Transport equations for subdiffusion with nonlinear particle interaction.
We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organis...
متن کاملSubdiffusion, chemotaxis, and anomalous aggregation.
We propose a nonlinear random walk model which is suitable for the analysis of both chemotaxis and anomalous subdiffusive transport. We derive the master equations for the population density for the case when the transition rate for a random walk depends on residence time, chemotactic substance, and population density. We introduce the anomalous chemotactic sensitivity and find an anomalous agg...
متن کاملFront propagation in hyperbolic fractional reaction-diffusion equations.
From the continuous-time random walk scheme and assuming a Lévy waiting time distribution typical of subdiffusive transport processes, we study a hyperbolic reaction-diffusion equation involving time fractional derivatives. The linear speed selection of wave fronts in this equation is analyzed. When the reaction-diffusion dimensionless number and the fractional index satisfy a certain condition...
متن کاملSubdiffusive master equation with space-dependent anomalous exponent and structural instability.
We derive the fractional master equation with space-dependent anomalous exponent. We analyze the asymptotic behavior of the corresponding lattice model both analytically and by Monte Carlo simulation. We show that the subdiffusive fractional equations with constant anomalous exponent μ in a bounded domain [0,L] are not structurally stable with respect to the nonhomogeneous variations of paramet...
متن کاملAn efficient new iterative method for finding exact solutions of nonlinear time-fractional partial differential equations
In recent years, notable contributions have been made to both the theory and applications of the fractional differential equations. These equations are increasingly used to model problems in research areas as diverse as population dynamics, mechanical systems, fiber optics, control, chaos, fluid mechanics, continuous-time random walks, anomalous diffusive and subdiffusive systems, unification o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 3 شماره
صفحات -
تاریخ انتشار 2013